Опытно-индуктивный подход к обучению математике
Автор: Митрохина Мария Викторовна, преподаватель ОГБПОУ «Спасский политехнический техникум»
В течение многих столетий математика является неотъемлемым элементом системы общего образования всех стран мира. Объясняется это уникальностью роли учебного предмета «Математика» в формировании личности. Образовательный, развивающий потенциал математики огромен.
Универсальный элемент мышления – логика. Полноценное развитие мышления современного человека, осуществляемое в ходе самопознания и общения с другими людьми, в ходе рассуждений и знакомства с образцами мышления, невозможно без формирования известной математической культуры. Искусство построения правильно расчлененного логического анализа ситуаций и вывода следствий из известных фактов путем логических рассуждений, искусство определять и умение работать с определениями, умение отличать известное от неизвестного, доказанное от недоказанного, искусство анализировать, классифицировать, выдвигать гипотезы, опровергать или доказывать их, пользоваться аналогиями, - все это и многое другое человек осваивает в значительной мере именно благодаря изучению математики.
Интуиция прокладывает путь к логике. Опыт, приобретаемый в процессе решения математических задач, способствует развитию как навыков рационального мышления и способов выражения мысли (лаконизм, точность, полнота, ясность и т.п.), так и интуиции – способности предвидеть результат и предугадать путь решения. Математика пробуждает воображение. Математика – путь к первым опытам научного творчества, путь к пониманию научной картины мира.
Исторический опыт преподавания математики свидетельствует: чтобы процесс изучения математики на всех этапах обучения проходил осознанно, необходимо всегда, когда это возможно:
- переходить к абстрактному от конкретного, прибегая к фактическому, изображаемому или воображаемому эксперименту, чтобы подготовить определение или доказательство, мотивировать развитие теории примерами из реальности или смежных учебных предметов;
- ставить и решать задачу выработки навыков и достижения необходимого уровня владения ими лишь в применении к вполне осознанным приемам и правилам;
- отдавать предпочтение размышлению и рассуждению перед натаскиванием и заучиванием наизусть, ограничивая нагрузку на память фундаментальными, часто применяемыми результатами;
- проявлять постоянное внимание к течению математической мысли обучающихся, поощрять индивидуальные способы выражения мысли (пусть и не всегда точные) и постепенно улучшать их, поощряя неожиданные идеи и открытия;
- побуждать обучающихся к собственным формулировкам, открытию отношений, свойств раньше, чем они узнают конечный результат;
- признавая важность письменной фиксации результатов математической деятельности обучающихся, не придавать ей большой самостоятельной ценности и избегать жесткости в требованиях к оформлению и канонизации форм, отдавая предпочтение существу, точности и результативности;
- предпочитать эвристическое исследование доктринальному изложению.
Полный вариант статьи с приложением во вложении (zip, 126Kb)
Скачать вложение